Definisi peluang :
Peluang adalah suatu kejadian yang diinginkan adalah perbandingan banyaknya titik sampel kejadian yang diinginkan itu dengan banyaknya anggota ruang sampel kejadian tersebut.
Misalkan A adalah suatu kejadian yang diinginkan, maka nilai peluang kejadian A dinyatakan dengan berikut ->
Permutasi k unsur dari n unsur adalah semua urutan yang berbeda yang mungkin dari k unsur yang diambil dari n unsur yang berbeda. Banyak permutasi k unsur dari n unsur ditulis atau .
Permutasi siklis (melingkar) dari n unsur adalah (n-1) !
Peluang adalah suatu kejadian yang diinginkan adalah perbandingan banyaknya titik sampel kejadian yang diinginkan itu dengan banyaknya anggota ruang sampel kejadian tersebut.
Misalkan A adalah suatu kejadian yang diinginkan, maka nilai peluang kejadian A dinyatakan dengan berikut ->
1.Permutasi
Permutasi adalah susunan unsur-unsur yang berbeda dalam urutan tertentu. Pada permutasi urutan diperhatikan sehingga Permutasi k unsur dari n unsur adalah semua urutan yang berbeda yang mungkin dari k unsur yang diambil dari n unsur yang berbeda. Banyak permutasi k unsur dari n unsur ditulis atau .
Permutasi siklis (melingkar) dari n unsur adalah (n-1) !
Contoh 5 soal permutasi :
1) Suatu keluarga yang terdiri atas 6 orang duduk mengelilingi sebuah meja makan yang berbentuk lingkaran. Berapa banyak cara agar mereka dapat duduk mengelilingi meja makan dengan cara yang berbeda?
Jawab :
Banyaknya cara agar 6 orang dapat duduk mengelilingi meja makan dengan urutan yang berbeda sama dengan banyak permutasi siklis (melingkar) 6 unsur yaitu :
2) Di kantor pusat DJBC Ada 3 orang staff yang dicalonkan untuk menjadi mengisi kekosongan 2 kursi pejabat eselon IV. Tentukan banyak cara yang bisa dipakai untuk mengisi jabatan tersebut?
2) Di kantor pusat DJBC Ada 3 orang staff yang dicalonkan untuk menjadi mengisi kekosongan 2 kursi pejabat eselon IV. Tentukan banyak cara yang bisa dipakai untuk mengisi jabatan tersebut?
jawab : Permutasi P (3,2), dengan n =3 (banyaknya staff) dan k =2 (jumlah posisi yang akan diisi)
3) Misal sobat rumushitung beri 5 angka 3,4,5,6, dan 7 dan rumushitung minta sobat untuk membuat angka yang terdiri dari 3 digit yang tidak berulang, sekarang berapa banyak bilangan yang lebih dari 400 yang bisa sobat hitung buat?
Jawab :
- karena bilangannya lebih dari 400 maka kotak pertama bisa diisi dengan 4 angka yaitu 4,5,6, dan 7
- karena tidak boleh berulang maka kotak kedua dan ketiga masing-masing bisa diisi 4 angk dan 3 angka
- jadi totol angka yang lebih dari 400 ada 4 x 4 x 3 = 48 angka
4) Hitunglah P (5, 2)
Jawab:
P (5, 2) = 5!/(5-2)!
= 5!/3!
= 5 x 4 x 3!/3!
= 20
5) Banyaknya bilangan yang terdiri atas 2 angka yang berbeda yang dapat disusun dari angka-angka 3, 5, dan 7?
Jawab:
Banyaknya bilangan yang terdiri atas 2 angka berbeda dan disusun dari angka-angka 3, 5, dan 7 adalah sama dengan permutasi yang terdiri atas dua unsur yang dipilih dari 3 unsur, P (3, 2)
P (3, 2) = 3!/(3-2)!
= 3!/1!
= 3 x 2 x 1!/1!
= 2 x 3
= 6
2.Kombinasi
Kombinasi adalah susunan unsur-unsur dengan tidak memperhatikan urutannya. Pada kombinasi AB = BA. Dari suatu himpunan dengan n unsur dapat disusun himpunan bagiannya dengan untuk Setiap himpunan bagian dengan k unsur dari himpunan dengan unsur n disebut kombinasi k unsur dari n yang dilambangkan dengan ,
Contoh 5 soal kombinasi :
1) Diketahui himpunan .
Tentukan banyak himpunan bagian dari himpunan A yang memiliki 2 unsur!
Jawab :
Banyak himpunan bagian dari A yang memiliki 2 unsur adalah C (6, 2).
2) Hitunglah C (5, 2)
1) Diketahui himpunan .
Tentukan banyak himpunan bagian dari himpunan A yang memiliki 2 unsur!
Jawab :
Banyak himpunan bagian dari A yang memiliki 2 unsur adalah C (6, 2).
2) Hitunglah C (5, 2)
Jawab:
C (5, 2) = 5!/(5-2)!2!
= 5!/3! 2!
= 5 x 4 x 3!/3! 2!
= 5 x 4/2 x 1
= 20/2
= 10
3) Dari 3 siswa, yaitu Budi, Rendi, dan Rema akan dibentuk pasangan ganda bulu tangkis. Berapa pasangan ganda yang dapat dibentuk dari ketiga siswa tersebut?
Jawab:
Banyaknya pasangan ganda bulu tangkis yang dapat dibentuk adalah C(3, 2)
C (3, 2) = 3!/(3-2)! 2!
= 3!/1! 2!
= 3 x 2!/1! 2!
= 3/1
= 3
4) Dalam babak penyisihan suatu turnamen, 25 pecatur satu sama lain bertanding satu kali. Banyaknya pertandingan yang terjadi adalah...
Jawab:
Dalam babak penyisihan, 25 pecatur satu sama lain bertanding satu kali. Untuk menentukan banyaknya pertandingan yang terjadi digunakan kombinasi, karena tidak melihat urutannya lagi.
C (25, 2) = 25!/(25-2)! 2!
= 25!/23! 2!
= 25 x 24 x 23!/23! 2!
= 25 x 24/ 2 x 1
= 600/2
= 300
5) Suatu pertemuan dihadiri oleh 15 orang undangan. Jika mereka saling berjabat tangan, banyak jabat tangan yang terjadi dalam pertemuan itu adalah ....
Jawab :
Banyak jabat tangan = C(15,2)
15!/(2!13!) = 105
^_^Terimakasih^_^
Sepertinya notasinya kurang tepat. Coba pakai sumber wikipedia.com, mengikuti penulisan yang umum di luar negri. Jadi, mungkin notasi permutasinya bisa diperbaiki seperti di https://en.wikipedia.org/wiki/Permutation
BalasHapusokay terima kasih masukannya :)
Hapus